Показатели, характеризующие безотказность. Показатели долговечности продукции Показатели, характеризующие безотказность

Вопрос 9. Показатели, применяемые для оценки безотказности изделий.

Вероятность безотказной работы - вероятность того, что в пределах заданной наработки отказ объекта не возникает.

Функция P(t) является непрерывной функцией времени, обладающей следующими очевидными свойствами:

Таким образом, вероятность безотказной работы в течение конечных интервалов времени может иметь значения 0

Статистическая вероятность безотказной работы характеризуется отношением числа исправно работающих изделий к общему числу изделий, находящихся под наблюдением.

где - число изделий, исправно работающих к моменту времени t;

Число изделий, находящихся под наблюдением.

Вероятность отказа - вероятность того, что объект откажет хотя бы 1 раз в течение заданного времени работы, будучи работоспособным в начальный момент.

Статистическая оценка вероятности отказа - отношение числа объектов, отказавших к моменту времени t, к числу объектов, исправных в начальный момент времени.

где - число изделий, отказавших к моменту времени t.

Вероятность безотказной работы и вероятность отказа в интервале от 0 до t связаны зависимостью Q (t) = 1 - Р (t).

Интенсивность отказов - условная плотность вероятности возникновения отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента при условии, что до этого момента отказ не возник:

Интенсивность отказов – отношение числа отказавших объектов в единицу времени к среднему числу объектов, исправно работавших в рассматриваемый промежуток времени (при условии, что отказавшие изделия не восстанавливаются и не заменяются исправными).

где - число изделий, отказавших в течение промежутка времени .

Интенсивность отказов позволяет наглядно установить характерные периоды работы объектов:

1. Период приработки - характеризуется относительно высокой интенсивностью отказов. В этот период преобладают в основном внезапные отказы, происходящие из-за дефектов, вызванных ошибками при проектировании или нарушением технологии изготовления.

2. Время нормальной работы машин - характеризуется примерно постоянной интенсивностью отказов и является основным и наиболее длительным за время эксплуатации машин. Внезапные отказы машин в этот период происходят редко и вызываются в основном скрытыми дефектами производства, преждевременным износом отдельных деталей.

3. Третий период характеризуется значительным возрастанием интенсивности отказов. Основная причина - износ деталей и сопряжений.

Средняя наработка до отказа – отношение суммы наработки объектов до отказа к числу наблюдаемых объектов, если они все отказали за время испытаний. Применяется для неремонтируемых изделий.

Средняя наработка на отказ – отношение суммарной наработки восстанавливаемых объектов к суммарному числу отказов этих объектов.

Вопрос 10. Показатели, применяемые для оценки долговечности изделий.

Технический ресурс - это наработка объекта от начала эксплуатации или ее возобновления после ремонта определенного вида до перехода в предельное состояние. Наработка может измеряться в единицах времени, длины, площади, объема, массы и других единицах.

Математическое ожидание ресурса называется средним ресурсом .

Различают средний ресурс до первого капитального ремонта, средний межремонтный ресурс, средний ресурс до списания, назначенный ресурс .

Гамма-процентный ресурс - наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью , выраженной в процентах. Данный показатель применяется для выбора срока гарантии изделий, определения потребности в запасных частях.

Срок службы - календарная продолжительность от начала эксплуатации объекта или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Математическое ожидание срока службы называется средним сроком службы. Различают срок службы до первого капитального ремонта, срок службы между капитальными ремонтами, срок службы до списания, средний срок службы, гамма-процентный срок службы и назначенный средний срок службы.

Гамма-процентный срок службы - это календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью , выраженной в процентах.

Назначенный срок службы - это календарная продолжительность эксплуатации объекта, при достижении которой применение по назначению должно быть прекращено.

Следует различать также гарантийный срок службы - отрезок календарного времени, в течение которого изготовитель обязуется безвозмездно исправлять все выявляющиеся в процессе эксплуатации изделий недостатки при условии соблюдения потребителем правил эксплуатации. Гарантийный срок службы исчисляется с момента приобретения или получения изделий потребителем. Он не является показателем надежности изделий и не может служить основой для нормирования и регулирования надежности, а лишь устанавливает взаимоотношения между потребителем и изготовителем.

Вопрос 11. Показатели, применяемые для оценки ремонтопригодности и сохраняемости изделий.

Показатели ремонтопригодности

Вероятность восстановления работоспособного состояния - вероятность того, что время восстановления работоспособного состояния объекта не превысит заданного. Этот показатель вычисляется т по формуле

Среднее время восстановления работоспособного состояния - математическое ожидание времени восстановления работоспособного состояния.

d *(t ) - количество отказов

Показатели сохраняемости

Гамма-процентный срок сохраняемости - срок сохраняемости, достигаемый объектом с заданной вероятностью у, выраженной в процентах.

Средний срок сохраняемости - математическое ожидание срока сохраняемости.

Вопрос 12. Комплексные показатели надежности изделия.

Коэффициент готовности – вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается.

Коэффициент готовности характеризует обобщенные свойства обслуживаемого оборудования. Например, изделие с высокой интенсивностью отказов, но быстро восстанавливаемое может иметь коэффициент готовности больше, чем изделие с малой интенсивностью отказов и большим средним временем восстановления.

Коэффициент технического использования – отношение математического ожидания интервалов времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к сумме математических ожиданий интервалов времени пребывания объекта в работоспособном состоянии, простоев, обусловленных техническим обслуживанием, и ремонтов за тот же период эксплуатации.

Коэффициент учитывает затраты времени на плановые и неплановые ремонты и характеризует долю времени нахождения объекта в работоспособном состоянии относительно рассматриваемой продолжительности эксплуатации.

Коэффициент оперативной готовности – вероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени. Характеризует надежность объектов, необходимость применения которых возникает в произвольный момент времени, после которого требуется безотказная работа.

Коэффициент планируемого применения - это доля периода эксплуатации, в течение которой объект не должен находиться на плановом техническом обслуживании и ремонте, т.е. это отношение разности заданной продолжительности эксплуатации и математического ожидания суммарной продолжительности плановых технических обслуживании и ремонтов за этот же период эксплуатации к значению этого периода;

Коэффициент сохранения эффективности - отношение значения показателя эффективности за определенную продолжительность эксплуатации к номинальному значению этого показателя, вычисленному при условии, что отказы объекта в течение того же периода эксплуатации не возникают. Коэффициент сохранения эффективности характеризует степень влияния отказов элементов объекта на эффективность его применения по назначению.

4.1 Основные формулы и определения

Долговечность определяется как свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Для измерения долговечности наработку объекта фиксируют не до отказа, а до некоторого предельного состояния. Такая наработка называется техническим ресурсом (или просто ресурсом), а при календарном исчислении – сроком службы.

Технический ресурс – наработка объекта от начала его эксплуатации или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Срок службы – календарная продолжительность от начала эксплуатации объекта или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Из приведенного определения долговечности следует, что она не является только внутренним свойством объекта, а в значительной степени определяется условиями эксплуатации, то есть внешними по отношению к объекту фактами. К ним относятся в первую очередь качество технического обслуживания, квалификация эксплуатирующего персонала, качество и наличие запчастей и другие свойства ОТС.

В этом смысле долговечность является комплексной характеристикой. Однако при фиксированном множестве и уровнях этих факторов показатели долговечности несут определенную информацию о свойствах объекта, по которым можно сравнивать долговечность различных типов.

Показатели долговечности вводятся в соответствии с ранее данными определениями ресурса и срока службы, причем как ресурс, так и срок службы являются случайными величинами. Показателями долговечности служат числовые характеристики этих случайных величин.

К данной группе показателей долговечности относятся следующие:

1. Гамма-процентный ресурс r g - наработка, в течение которой объект не достигнет предельного состояния с заданной вероятностью g (при этом величину g обычно выражают в процентах).

Обозначим функцию распределения ресурса через , а дополнительную функцию распределения, именуемую функцией долговечности – через . Тогда гамма-процентный ресурс r g определяется из уравнения

, (4.1)

. (4.2)

Если, например, g = 90%, то соответствующий ресурс называется девяностопроцентным ресурсом. При g = 50% гамма-процентный ресурс называется медиантным ресурсом.

2. Средний ресурс – математическое ожидание ресурса. Существует несколько дополнительных разновидностей среднего ресурса (средний ресурс до списания, до капитального или среднего ремонта и т.д.).

Учитывая особое место понятий «ресурс (срок службы)» в обеспечении и поддевании летной годности ВС дополнительно к стандартизованным их оп­ределениям необходимы следующие пояснения.

Для авиационной техники ГА в целях обеспечения безопасности, надежно­сти и эффективности эксплуатации могут задаваться:

■ ресурс (срок службы) до списания (технический);

■ назначенный ресурс (срок службы);

■ гарантийный ресурс (срок службы);

■ межремонтный (до 1-го ремонта) ресурс (срок службы),

Указанные виды ресурсов для различных изделий могут определяться и (или) устанавливаться в комплексе, раздельно или не устанавливаться совсем при эксплуатации по техническому состоянию.

Ресурс до списания задается для ВС в целом и основных комплектующих изделий исходя из требований экономичности при условии обеспечения безо­пасности эксплуатации. Ресурс до списания может отрабатываться поэтапно.

При поэтапной отработке ресурса до списания могут устанавливаться:

■ начальный назначенный ресурс;

■ назначенный ресурс.

Порядок обеспечения и отработки в эксплуатации ресурса до списания опре­деляется совместно разработчиком и заказчиком (эксплуатантом), отражается в технических условиях (ТУ) на ВС и комплектующие изделия и устанавливается договором на поставку ВС.

Гарантийный ресурс изделия определяет период действия гарантийных обя­зательств изготовителя (исполнителя работ) и должен обеспечивать соответст­вие качества поставляемой продукции (проводимых работ) установленным в договоре на поставку (выполнение работ) или эксплуатационной документации требованиям. В пределах гарантийного ресурса, как правило, должны устранять без дополнительной оплаты эксплуатантом отказы изделия или заменяться не­качественные изделия (повторно выполняться работы) при соблюдении экс­плуатантом (заказчиком) условий эксплуатации, хранения, транспортирования и установки изделия, определенных ТУ на ВС и КИ (договором на выполнение работ).

Гарантийные ресурсы (сроки службы), устанавливаемые изготовителями ВС и КИ, как правило, охватывают заданный период наработки (календарный срок) с начала эксплуатации ВС в целом и КИ.

Срок хранения изделия с момента изготовления до начала эксплуатации мо­жет входить в гарантийный срок службы, что должно быть отражено в эксплуа­тационной документации на изделие и ТУ на ВС.

Гарантийные ресурсы, устанавливаемые исполнителем восстановительных работ для ВС и основных изделий, охватывают заданный период эксплуатации ВС в целом и (или) комплектующих изделий после выполнения этих работ.

Межремонтный ресурс изделия определяется условиями обеспечения на­дежности и экономичности эксплуатации парка изделий данного типа и уста­навливает ограничение по применению этих изделий, независимо от их факти­ческого технического состояния.

Первый ремонт выполняется при наработке изделий с начала эксплуатации, равной ресурсу до первого ремонта, далее могут устанавливаться межремонтные ресурсы до отработки ресурса до списания.

Межремонтные (до 1-го ремонта) ресурсы могут устанавливаться для ВС в целом и отдельных изделий. Величина межремонтных ресурсов определяется разработчиками ВС и изделий из условий обеспечения ресурса до списания ВС или изделия или устанавливается эксплуатантом и исполнителем работ (ремон­та), исходя из технического состояния изделий, технологий и организации вы­полнения работ при условии обеспечения безопасности, экономичности и эф­фективности эксплуатации данного типа изделий и (или) ВС в целом.

Общие принципы формирования системы ресурсов авиационной техники понимаются следующим образом.

Ресурс до списания является технико-экономической характеристикой со­вершенства изделия авиационной техники и представляет ожидаемый предел экономически эффективного использования изделия по назначению в реальных условиях эксплуатации, который технически заложен в конструкцию при проек­тировании и может быть достигнут и даже превзойден в процессе эксплуатации после проведения комплекса работ по обеспечению безопасности и надежности эксплуатации, подтверждения соответствия установленным требованиям и оп­ределения условий обеспечения выполнения этих требований. Поэтому ресурс до списания задается, а условия его подтверждения (или не подтверждения) ре­гулируются экономическими и техническими взаимоотношениями разработчи­ка, изготовителя и эксплуатанта, устанавливаемыми на основе договорных от­ношений в соответствии с действующими законами и нормативными докумен­тами.

Обеспечение и подтверждение части заданного ресурса до списания реали­зуется, при необходимости, установлением назначенного (начального назначен­ного) ресурса изделиям авиационной техники, которое производится после вы­полнения комплекса ресурсных работ, обосновывающих безопасную и надеж­ную эксплуатацию изделий в установленных пределах наработки (срока служ­бы) с определением всех необходимых, с позиций безопасности и надежности, условий и ограничений на процессы летной и технической эксплуатации. Прак­тически может быть подтверждена как возможность эксплуатации изделия сверх первоначально заданного ресурса до списания, так и невозможность его дости­жения.

В перечень условий и ограничений, обеспечивающих возможность эксплуа­тации изделия в пределах назначенного ресурса, как правило, включаются кон­трольно-восстановительные работы (КВР) по контролю технического состояния, ремонту или замене элементов (деталей, узлов, блоков) изделия, которые долж­ны быть выполнены на различных этапах отработки назначенного ресурса. По общности технологических или организационных условий выполнения эти ра­боты группируются в комплексы, выполняемые через заданные интервалы нара­ботки ВС в целом, часто с использованием специального оснащения, оборудо­вания, документации и специалистов. При этом может быть организационно и экономически целесообразно выполнять КВР на специализированных предпри­ятиях, которые осуществляют их качественно, с оказанием дополнительных ус­луг (таких как восстановление внешнего вида, соответствия нормам техниче­ских параметров и др.), не связанных непосредственно с безопасностью экс­плуатации ВС в целом. В этом случае периодичность выполнения КВР может устанавливаться как межремонтный ресурс в целом для ВС, так и отдельным его изделиям, что закрепляет организационное оформление условий выполнения комплексов КВР на специализированном предприятии или в подразделении экс­плуатанта. Таким образом, межремонтный ресурс устанавливает не технические, а организационные формы выполнения условий отработки ресурса до списания (назначенного ресурса), связанные с восстановлением технического состояния изделия авиационной техники, и не является обязательным к назначению.

Ресурс до списания (назначенный) также может не устанавливаться для ВС в целом, а определяется экономической целесообразностью восстановления лет­ной годности ВС и условиями ее поддержания на рассматриваемом интервале (этапе) эксплуатации ВС.

Условия обеспечения летной годности ВС устанавливает изготовитель, раз­работчик и реализует эксплуатант, который определяет для себя экономическую целесообразность проведения работ по обеспечению летной годности ВС при отработке назначенного ресурса с целью продолжения дальнейшей эксплуата­ции ВС. При экономической нецелесообразности выполнения работ по поддер­жанию летной годности ВС (большой объем доработок и т. д.) эксплуатант мо­жет прекратить дальнейшую эксплуатацию экземпляра ВС, хотя технические качества ВС могут обеспечивать его дальнейшую эксплуатацию на уровне установленных требований, но с большими затратами средств, труда или вре­мени.

Изложенные выше термины, определения и пояснения к ним положены в ос­нову систем ТОиР ВС гражданской авиации России.

АННОТАЦИЯ. Рассматриваются понятия «назначенный ресурс» и «назначенный срок службы оборудования». Обсуждается взаимосвязь этих показателей с техническим состоянием оборудования.

КЛЮЧЕВЫЕ СЛОВА: парковый ресурс, назначенный ресурс, назначенный срок службы, индивидуальный ресурс, техническое состояние, техническое диагностирование.

Ведение

Основную причину катастрофы на гидроагрегате № 2 Саяно-Шушенской ГЭС в августе 2009 г. многие связывают с высокой степенью износа оборудования. В качестве основного аргумента приводятся данные об исчерпании назначенного срока службы данного гидроагрегата в ноябре 2009 г. Другими словами, авария произошла за три месяца до достижения этого срока. Данное утверждение не выглядит бесспорным, ем более что временное рабочее колесо гидротурбины (её наиболее ответственный и повреждаемый узел) было заменено на штатное на ГА b 2 в ноябре 1986 г. Чтобы разобраться в этом тросе, необходимо ещё раз обратиться к терминам, относящимся к показателям надежности оборудования, и вспомнить историю назначения этих характеристик.

Что такое «назначенный ресурс» и «назначенный срок службы»

Согласно ГОСТ 27.002-89 под назначенным ресурсом понимается «суммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния», а под понятием «назначенный срок службы» - «календарная продолжительность эксплуатации, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния».

Оба определения достаточно категоричны и не допускают их различного толкования, если бы не приведенное в том же стандарте примечание: «Примечание. По истечении назначенного ресурса (срока службы...) объект должен быть изъят из эксплуатации, и должно быть принято решение, предусмотренное соответствующей нормативно-технической документацией - направление в ремонт, списание, уничтожение, проверка и установление нового назначенного срока и т.д.».

Оказывается, жизнь оборудования не заканчивается с исчерпанием его назначенного ресурса (срока службы). Именно это и реализуется на практике и в нашей стране, и за рубежом. Российская экономика не готова сегодня выводить из эксплуатации энергетическое оборудование, отработавшее назначенный ресурс или срок службы.

Но это не означает, что на электростанциях страны должно эксплуатироваться оборудование, не удовлетворяющее требованиям безопасности и надежности. Продление ресурса (срока службы) оборудования, зданий и сооружений сверх назначенного должно обосновываться и должным образом оформляться.

Следует дать пояснения к определениям назначенного ресурса и назначенного срока службы.

Несмотря на схожесть определений этих терминов, они между собой в корне отличаются. Ресурс, как правило, назначается для элементов оборудования, работающего при температуре 450°С и выше, т.е. в условиях протекания в металле процессов ползучести и активных структурных превращений, приводящих к неминуемому достижению предельного состояния металла, потере оборудованием работоспособного состояния. Под назначенный ресурс конструктор оборудования подбирает типоразмер деталей, материал и условия их эксплуатации. Ресурс оборудования можно рассчитать и спрогнозировать.

Назначенный срок службы выбирается из экономических соображений и трактуется как срок накопления амортизационных начислений, достаточных для замены устаревшего оборудования на новое. Часто для оборудования с различным назначенным сроком службы используются одни и те же нормы расчета на прочность. Предполагается, что оборудование должно эксплуатироваться не менее назначенного срока службы. При исчерпании назначенного срока службы при удовлетворительном состоянии оборудования назначается новый срок, который обосновывается опытом эксплуатации и гарантированно не приведет к выходу из строя оборудования до очередной ревизии. Неверно требовать от организации, эксплуатирующей оборудование, и экспертных организаций, проводящих техническое диагностирование, рассчитывать и обосновывать остаточный ресурс низкотемпературных элементов энергоустановок, поскольку для этих деталей корректно рассчитать остаточный ресурс нельзя.

Назначение срока службы не исключает протекания низкотемпературных процессов износа, приводящих к более раннему выходу из строя оборудования, таких, как коррозия, эрозия и др. Если конструктивно не удается исключить риск раннего выхода из строя оборудования, ему присваивается статус быстроизнашиваемого. Для такого оборудования порядок контроля и замены специально описывается в нормативных документах.

Для оборудования тепловых электростанций отдельно назначается ресурс для высокотемпературных элементов и срок службы для остальных деталей. Так, в ГОСТ 27625-88 отмечается:

«2.1.4. Полный назначенный срок службы энергоблока и входящего в него основного оборудования выпуска до 1991 г. - не менее 30 лет, оборудования выпуска с 1991 г. - 40 лет, кроме быстроизнашиваемых элементов оборудования, перечень и сроки службы которых установлены в стандартах или технических условиях на конкретный вид оборудования.

2.1.5. Полный назначенный ресурс составных частей оборудования энергоблока, работающих при температуре 450°С и выше, - не менее 200000 ч, кроме быстроизнашиваемых элементов, перечень и сроки службы которых установлены в стандартах или технических условиях на конкретный вид оборудования.»

История появления терминов парковый ресурс и индивидуальный ресурс

Согласно под парковым ресурсом понимается: «наработка однотипных по конструкции, маркам стали и условиям эксплуатации элементов теплоэнергетического оборудования, в пределах которой обеспечивается их безаварийная работа при соблюдении требований действующей нормативной документации». Индивидуальный ресурс - это «назначенный ресурс конкретных узлов и элементов, установленный расчетно-опытным путем с учетом фактических размеров, состояния металла и условий эксплуатации».

При создании энергоблоков 150 - 300 МВт назначенный ресурс их высокотемпературных элементов составлял 100 тыс.ч. Наработка головных блоков приблизилась к этому ресурсу к концу 70-х годов прошлого века. При существовавшей в то время степени загрузки энергомашиностроительных предприятий реализовать программу повсеместной замены оборудования достигшего назначенного ресурса не представлялось возможным. Поэтому по инициативе, прежде всего, турбостроительных заводов, было высказано пожелание увеличить назначенный ресурс энергоблоков. Для решения данной проблемы по заданию трёх министерств (министерств энергетики, энергетического машиностроения и тяжелого машиностроения) были образованы несколько межведомственных комиссий, которые организовали проведение серии комплексных научно-исследовательских работ. В рамках этих работ анализировался опыт эксплуатации энергоблоков, исследовался длительно работавший металл ответственных элементов оборудования, разрабатывались методы и средства контроля металла и технического диагностирования. Силами специализированных бригад проводился выборочный контроль этих элементов на электростанциях. Итогом работы межведомственных комиссий стало решение об увеличении назначенного ресурса энергоблоков сначала до 170 тыс.ч, а затем и до 220 - 270 тыс.ч. Для того чтобы отличить новый назначенный ресурс от ресурса, назначенного при проектировании оборудования, его назвали парковый ресурс. Было принято волевое решение приравнивать ресурс энергоблока к ресурсу паровой турбины, а её ресурс, в свою очередь, к ресурсу высокотемпературных роторов. Считается, что замена этой наиболее ответственной и дорогостоящей детали турбины и блока делает нерентабельным и нецелесообразным продолжение срока эксплуатации остальных узлов и деталей блока. При этом другие высокотемпературные элементы котлов, турбин и паропроводов могут иметь свой парковый ресурс, не совпадающий с парковым ресурсом энергоблока. В случае более раннего исчерпания этими элементами своего ресурса должна производиться их замена, а эксплуатация блока будет продолжена.

Понятие парковый ресурс относится только к высокотемпературным элементам тепломеханического оборудования ТЭС.

Увеличить более чем в два раза назначенный ресурс энергоблоков позволили два фактора:

Существовавший ранее при проектировании подход к расчету на прочность был избыточно консервативен;

В 1971 г. из-за массовых повреждений труб поверхностей нагрева паровых котлов директивно была снижена температура острого пара и пара горячего промперегрева с 565 до 545°С. Для применяемого в теплоэнергетике класса сталей снижение температуры на 20° эквивалентно увеличению остаточного ресурса металла высокотемпературных элементов, ориентировочно, в четыре раза.

Позднее (в середине 80-х годов) аналогичная попытка увеличения назначенного ресурса была предпринята применительно к блокам 500 - 800 МВт. Но для этих энергоблоков по итогам всестороннего рассмотрения значение паркового ресурса было оставлено на уровне 100 тыс.ч., поскольку эти блоки уже изначально проектировались на ресурс 100 тыс. ч. при температуре эксплуатации 540°С, а нормы расчета на прочность к тому времени были актуализированы.

Справедливости ради следует отметить, что не для всех элементов оборудования энергоблоков парковый ресурс превысил значения первоначально назначенного ресурса 100 тыс.ч. Для некоторых типоразмеров паропроводов парковый ресурс гибов по результатам анализа составил 70-90 тыс.ч.

К 90-м годам наработка головных блоков приблизилась к значениям паркового ресурса, но актуальность продления срока их службы сохранилась. Второй этап кампании по продлению ресурса установленного оборудования был связан с ведением понятия индивидуального ресурса. Значения паркового ресурса устанавливаются, исходя из наиболее неблагоприятного сочетания показателей, характеризующих эксплуатацию оборудования и свойства металла ответственных элементов. При рассмотрении возможности продления ресурса конкретного оборудования, как правило, имеются дополнительные резервы, позволяющие назначить дополнительный ресурс эксплуатации без снижения показателей надежности. По опыту ВТИ прогнозируется, что индивидуальный ресурс ответственных элементов тепломеханического оборудования превысит парковый ресурс в среднем в полтора раза. Из-за фактора -неопределенности при назначении индивидуального ресурса оборудования не разрешается единовременно продлевать его ресурс (срок службы) более чем на 50 тыс.ч. или 8 лет. Поэтому за срок службы оборудования возможно несколько процедур продления ресурса (срока службы).

Применительно к современным условиям наиболее актуализированная процедура продления ресурса описана в стандарте организации СТО "7330282.27.100.001-2007 . Ответственность за организацию процедуры продления ресурса установленного энергетического оборудования возлагается на руководителя эксплуатирующей организации. К техническому диагностированию ответственных элементов оборудования должна привлекаться специализированная или квалифицированная экспертная организация. По результатам технического диагностирования с учетом оценки целесообразности дальнейшей эксплуатации решение о продлении индивидуального ресурса оборудования принимает владелец оборудования. Федеральный орган исполнительной власти, уполномоченный в области промышленной безопасности, утверждает заключение специализированной или экспертной организации, если объект относится к оборудованию, работающему под избыточным давлением, либо при температуре более 115°С.

В исключительных случаях, даже при приближении состояния металла к предельному, ресурс оборудования можно продлить, применяя соответствующие технологии ремонта или накладывая ограничения на режимы его эксплуатации. Среди ремонтных технологий наибольшее распространение получила восстановительная термическая обработка (ВТО) паропроводов. В ряде случаев после проведения ВТО удается назначить паропроводу повторно ресурс, равный по величине парковому.

Взаимосвязь технического состояния оборудования с его наработкой и сроком службы

Техническое состояние оборудования можно оценивать как по показателям надежности, так и по эффективности эксплуатации.

Бытует мнение, что физический ресурс оборудования, установленного на объектах электроэнергетики, исчерпан и, того и гляди, завтра начнутся массовые разрушения и отказы. На самом деле ресурс (срок службы) оборудования можно продлевать до бесконечности, но при условии, что оборудование своевременно и качественно проходит техническое диагностирование и его элементы, исчерпавшие физический (предельный) ресурс, своевременно ремонтируются или заменяются. Не сами технические устройства имеют предельный ресурс, а их высоконагруженные элементы и детали. К примеру, не паровой котел имеет предельный ресурс по показателям надежности, а его элементы, такие, как трубы поверхностей нагрева, коллекторы, барабан, перепускные трубы. Зачастую, за срок службы котла его часто повреждаемые элементы заменяются несколько раз.

Однако это не означает, что энергетическое оборудование целесообразно эксплуатировать сколь угодно долго. С наработкой оборудования неминуемо будут расти затраты на его ремонт и техническое обслуживание. В условиях сдерживания роста тарифов на электрическую и тепловую энергию, начиная с определенного момента, будет невыгодно эксплуатировать длительно работавшее оборудование. Это момент и следует отождествлять с физическим износом оборудования.

Как отмечалось выше, не только показатели надежности характеризуют техническое состояние оборудования. С наработкой оборудования неминуемо будут ухудшаться и его технические показатели, отражающие эффективность энергоустановки. При ремонте тепломеханического оборудования большой объем работ связан с восстановлением зазоров, сокращением присосов и т.п. Требование поддержания технических показателей на приемлемом уровне будет также приводить к росту ремонтных затрат по мере старения оборудования. Так как эффективность эксплуатации энергоустановок не относится к категории безопасности, решение о приемлемом уровне эффективности оборудования принимает его владелец самостоятельно без участия федеральных органов власти.

Оценка технического состояния по обоим показателям напрямую зависит от качества проведения технического диагностирования оборудования, а именно - от применяемых методов и средств диагностики, квалификации экспертов и понимания ими реальных процессов, приводящих к исчерпанию ресурса. Применительно к большинству элементов тепломеханического оборудования ТЭС накопленный за многие десятилетия опыт позволяет сформулировать необходимый и достаточный объем контроля металла и иных видов диагностики, исключающий массовый выход оборудования из строя. Для некоторых элементов оборудования протекающие в металле процессы пока не достаточно изучены. Например, с 2003 г. стали обнаруживаться массовые повреждения валов сборных роторов паровых турбин частей низкого и среднего давления. До окончательного изучения природы этих повреждений и решения данной проблемы, чтобы исключить разрушение роторов при эксплуатации, в действующих стандартах предусмотрен контроль валов всех типов роторов после наработке 100 тыс.ч, далее -каждые 50 тыс.ч со снятием насадных дисков.

В электроэнергетике наряду с описанным подходом, основанным на изучении физических процессов, протекающих при эксплуатации оборудования, все большее распространение получает формализованный подход, увязывающий напрямую техническое состояние оборудования с его наработкой. Примером такой методологии может служить нормативный документ ОАО РАО «ЕЭС России» , в основу которого положена широко применяемая в международной практике методология фирмы Deloitte&Touche.

Согласно этой методологии физический износ оборудования рассчитывается как отношение его фактического срока службы к назначенному. Анализ степени физического износа оборудования осуществляется по шкале приведенной в табл. 2. По данной методологии ЗАО «АйТи Энерджи Аналитика» провел оценку технического состояния оборудования гидроэлектростанций России . По его анализу больше половины установленных на ГЭС гидротурбин имеют физический износ, превышающий 95% (группа «3» по табл. 2). Иными словами, это оборудование может быть использовано только в качестве металлолома. В работоспособные группы (от «А» до «Д») попало всего лишь 23% проанализированного парка гидротурбин. При этом гидроагрегат № 2 Саяно-Шушенской ГЭС по данной оценке занимал далеко не самую худшую позицию.

Данный подход может, конечно, служить неким ориентиром для владельца о сроках подготовки к замене оборудования, но ни в коем случае не снимает с него ответственности за проведение диагностики оборудования и адекватное реагирование на её результаты.

Выводы

1. Не исчерпание срока службы оборудования определяет угрозу безопасности и надежности его эксплуатации, а отсутствие объективной информации о техническом состоянии оборудования.

2. Формализованный подход к оценке технического состояния оборудования, основанный на сопоставлении фактического и назначенного сроков службы, не может заменить необходимость проведения технического диагностирования конкретных объектов, а лишь дополняет его.

Основным источником всех наших проблем является человеческий фактор, определяющий уровень безопасности и надежности оборудования на всех этапах его жизненного цикла, включая формирование общей технической политики в отрасли.

Литература

1. ГОСТ 27.002-89. Надежность в технике. Основные понятия. Термины и определения.

2. ГОСТ 27625-88. Блоки энергетические для тепловых электростанций. Требования к надежности, маневренности и экономичности.

3. РД 10-577-03. Типовая инструкция по контролю металла и продлению срока службы основных элементов котлов, турбин и трубопроводов тепловых электростанций. М., ФГУП «НТЦ «Промышленная безопасность», 2004.

4. СТО 17230282.27.100.005-2008. Основные элементы котлов, турбин и трубопроводов ТЭС. Контроль состояния металла. Нормы и требования. М., НП «ИНВЭЛ», 2009.

5. Тумановский А.Г., Резинских В.Ф. Стратегия продления ресурса и технического перевооружения тепловых электростанций. «Теплоэнергетика», №6,2001 г., с. 3-10.

6. СТО 17330282.27.100.001 - 2007. Тепловые электрические станции. Методики оценки состояния основного оборудования. М., НП «ИНВЭЛ», 2007.

7. Методология и руководство по проведению оценки бизнеса и/или активов ОАО РАО «ЕЭС России» и ОАО ДЗО РАО «ЕЭС России», Deloitte&Touche, 2003 г.

8. Рэнкинги физического износа оборудования ГЭС. ЗАО «АйТи Энерджи Аналитика». М., 2009,с. 49.

Лекция . ПОКАЗАТЕЛИ НАДЁЖНОСТИ

Важнейшей технической характеристикой качества является надежность. Надежность оценивается вероятностными характеристиками, основанными на статистиче­ской обработке экспериментальных данных.

Основные понятия, термины и их определения, характери­зующие надежность техники и, в частности, изделий машино­строения, даны в ГОСТ 27.002-89.

Надежность - свойство изделия сохранять в установленных пределах времени значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремон­тов, хранения, транспортировки и других действий.

Надежность изделия - это комплексное свойство, которое может вклю­чать: безотказность, долговечность, ремонтопригодность, сохраняемость и т.п.

Безотказность - свойство изделия непрерывно сохранять ра­ботоспособность в течение заданного времени или наработки в определенных условиях эксплуатации.

Работоспособное состояние - состояние изделия, при кото­ром оно способно выполнять заданные функции, сохраняя при этом допустимые значения всех основных параметров, установ­ленных нормативно-технической документацией (НТД) и (или) проектно-конструкторской документацией.

Долговечность - свойство изделия сохранять во времени ра­ботоспособность, с необходимыми перерывами для техничес­кого обслуживания и ремонта, до его предельного состояния, оговоренного технической документацией.

Долговечность обусловлена наступлением таких событий, как повреждение или отказ.

Повреждение - событие, заключающееся в нарушении ис­правности изделия.

Отказ - событие, в результате которого происходит полная или частичная утрата работоспособности изделия.

Исправное состояние - состояние, при котором изделие со­ответствует всем требованиям нормативно-технической и (или) проектно-конструкторской документации.

Неисправное состояние - состояние, при котором изделие не удовлетворяет хотя бы одному из требований нормативно-технической и (или) проектно-конструкторской документации.

Неисправное изделие может быть работоспособным. Напри­мер, снижение плотности электролита в аккумуляторных батаре­ях, повреждение облицовки автомобиля означают неисправное состояние, но такой автомобиль работоспособен. Неработоспо­собное изделие является одновременно и неисправным.

Наработка - продолжительность (измеряемая, например, в часах или циклах) или объем работы изделия (измеряемый, например, в тоннах, километрах, кубометрах и т п. единицах).

Ресурс - суммарная наработка изделия от начала его эксплуатации или ее возобновления после ремонта до перехода в предельное состояние.

Предельное состояние - состояние изделия, при котором его дальнейшая эксплуатация (применение) недопустима по требо­ваниям безопасности или нецелесообразна по экономическим причинам. Предельное состояние наступает в ре­зультате исчерпания ресурса или в аварийной ситуации.

Срок службы - календарная продолжительность эксплуата­ции изделий или ее возобновления после ремонта от начала его применения до наступления предельного состояния

Неработоспособное состояние - состояние изделия, при ко­тором оно не способно нормально выполнять хотя бы одну из заданных функций.

Перевод изделия из неисправного или неработоспособного состояния в исправное или работоспособное происходит в ре­зультате восстановления.

Восстановление - процесс обнаружения и устранения отказа (повреждения) изделия с целью восстановления его работоспо­собности (устранение неисправности).

Основным способом восстановления работоспособности яв­ляется ремонт.

Ремонтопригодность - свойство изделия, заключающееся в его приспособленности к поддержанию и восстановлению ра­ботоспособного состояния путем обнаружения и устранения дефекта и неисправности технической диагностикой, обслужи­ванием и ремонтом.

Сохраняемость - свойство изделий непрерывно сохранять зна­чения установленных показателей его качества в заданных пре­делах в течение длительного хранения и транспортирования

Срок сохраняемости - календарная продолжительность хра­нения и (или) транспортирования изделия в заданных услови­ях, в течение и после которых сохраняются исправность, а так­же значения показателей безотказности, долговечности и ремонтопригодности в пределах, установленных нормативно-тех­нической документацией на данный объект.

Н

Рис. 1. Схема состояний издели

адежность постоянно изменяется в процессе эксплуатации технического изделия и при этом характеризует его состояния. Схема изменения состояний эксплуатируемого изделия приве­дена ниже (рис. 1).

Для количественной характеристики каждого из свойств надеж­ности изделия служат такие единичные показатели, как наработка до отказа и на отказ, наработка между отказами, ресурс, срок служ­бы, срок сохраняемости, время восстановления. Значения этих ве­личин получают по данным испытаний или эксплуатации.

Комплексные показатели надежности, так же как коэффи­циент готовности, коэффициент технического использования и коэффициент оперативной готовности, вычисляются поданным единичных показателей. Номенклатура показателей надежности приведена в табл. 1.

Таблица 1. Примерная номенклатура показателей надежности

Свойство надежности

Наименование показателя

Обозначение

Единичные показатели

Безотказност ь

Вероятность безотказной работы Средняя наработка до отказа

Средняя наработка на отказ

Средняя наработка между отказами Интенсивность отказов

Поток отказов восстанавливаемого изделия

Средняя частота отказов

Вероятность отказов

Долговечность

Средний ресурс

Гамма-процентный ресурс Назначенный ресурс

Установленный ресурс

Средний срок службы

Гамма-процентный срок службы Назначенный срок службы Установленный срок службы

Ремонтопригод­ность

Среднее время восстановления Вероятность восстановления Коэффициент ремонтосложности

Сохраняемость

Средний срок сохраняемости

Гамма-процентный срок сохраняемости

Назначенный срок хранения Установленный срок сохраняемости

Обобщенные показатели

Совокупность свойств

Коэффициент готовности Коэффициент технического использования

Коэффициент оперативной готовности

Показатели, характеризующие безотказность

Вероятность безотказной работы отдельного изделия оцени­вается как:

где Т - время от начала работы до отказа;

t - время, для которого определяется вероятность безотказ­ной работы.

Величина T может быть больше, меньше или равна t . Следо­вательно,

Вероятность безотказной работы - это статистический и от­носительный показатель сохранения работоспособности одно­типных изделий серийного производства, выражающий вероят­ность того, что в пределах заданной наработки отказ изделий не наступает. Для установления значения вероятности безотказной работы серийных изделий используют формулу для среднеста­тистического значения:

где N - число наблюдаемых изделий (или элементов);

N o - число отказавших изделий за время t ;

N р - число работоспособных изделий к концу времени t испытаний или эксплуатации.

Вероятность безотказной работы является одной из наиболее значимых характеристик надежности изделия, так как она охва­тывает все факторы, влияющие на надежность. Для вычисления вероятности безотказной работы используются данные, накап­ливаемые путем наблюдений за работой при эксплуатации или при специальных испытаниях. Чем больше изделий подвергает­ся наблюдениям или испытаниям на надежность, тем точнее определяется вероятность безотказной работы других однотип­ных изделий.

Так как безотказная работа и отказ - взаимно противопо­ложные события, то оценку вероятности отказа (Q (t )) опреде­ляют по формуле:

Расчет среднестатистического времени наработки до отказа (или среднего времени безотказной работы) по результатам на­блюдений определяют по формуле:

где N o - число элементов или изделий, подвергнутых наблюде­ниям или испытаниям;

T i - время безотказной работы i -го элемента (изделия).

Статистическую оценку среднего значения наработки на от­каз вычисляют как отношение суммарной наработки за рас­сматриваемый период испытаний или эксплуатации изделий к суммарному числу отказов этих изделий за тот же период вре­мени:

Статистическую оценку среднего значения наработки между отказами вычисляют как отношение суммарной наработки из­делия между отказами за рассматриваемый период испытаний или эксплуатации к числу отказов этого (их) объекта(ов) за тот же период:

где т - число отказов за время t .

Показатели долговечности

Статистическая оценка среднего ресурса такова:

где Т р i - ресурс i -го объекта;

N - число изделий, поставленных на испытания или в экс­плуатацию.

Гамма-процентный ресурс выражает наработку, в течение которой изделие с заданной вероятностью γ процентов не дос­тигает предельного состояния. Гамма-процентный ресурс явля­ется основным расчетным показателем, например для подшип­ников и других изделий. Существенное достоинство этого показателя в возможности его определения до завершения ис­пытаний всех образцов. В большинстве случаев для различных изделий используют критерий 90%-го ресурса.

Назначенный ресурс - суммарная наработка, при достиже­нии которой применение изделия по назначению должно быть прекращено независимо от его технического состояния.

Под установленным ресурсом понимается технически обосно­ванная или заданная величина ресурса, обеспечиваемая конст­рукцией, технологией и условиями эксплуатации, в пределах которой изделие не должно достигать предельного состояния.

Статистическую оценку среднего срока службы определяют по формуле:

I

где Т сл i - срок службы i -го изделия.

Гамма-процентный срок службы представляет собой календарную продолжительность эксплуатации, в течение которой изделие не достигает предельного состояния с вероятностью , выраженной в процентах. Для его расчета используют соотно­шение

Назначенный срок службы - суммарная календарная продол­жительность эксплуатации, при достижении которой применение изделия по назначению должно быть прекращено независи­мо от его технического состояния.

Под установленным сроком службы понимают технико-экономически обоснованный срок службы, обеспечиваемый кон­струкцией, технологией и эксплуатацией, в пределах которого изделие не должно достигать предельного состояния.

Основной причиной снижения показателей дол­говечности изделия является износ его деталей.